

Page | 1

Agile Systems Engineering: an Iterative and Collaborative

Approach for Complex Systems Development

Sevag AINEJIAN1, Guy-André BOY2, Nicolas CHARLIER3, Yann DECRE4, Daniel KROB5, and

Loic LE SAUCE6

1 CESAMES – 10, rue de Penthièvre – 75008 Paris – France – email: sevag.ainejian@cesames.net
2 CentraleSupélec – France – email: guy-andre.boy@centralesupelec.fr
3 CESAMES – 10, rue de Penthièvre – 75008 Paris – France – email: nicolas.charlier@cesames.net
4 CESAMES – 10, rue de Penthièvre – 75008 Paris – France – email: yann.decre@cesames.net
5 CESAMES – 10, rue de Penthièvre – 75008 Paris – France – email: daniel.krob@cesames.net – Corresponding author
6 CESAMES – 10, rue de Penthièvre – 75008 Paris – France – email: loic.lesauce@cesames.net

Abstract

This paper presents an agile systems engineering framework especially dedicated for developing

complex systems, that is to say mixed hardware and software systems where physics is critical. Our

approach consists in seeing an agile complex system development project as a mechanism, controlled

by the key design drivers associated with a system, for quickly refining its design space. It was validated

in practice on several aeronautic development projects and showed gains, compared to projects of

similar size and complexity, of the order of – 30 % on design schedules and of the order of – 50 % on

resource workload and costs.

Introduction

Agile development methods are nowadays well established in software engineering. They refer to an

approach to software development under which requirements and solutions evolve simultaneously

through the collaborative effort of self-organizing cross-functional teams, including customer(s) and

end-users(s), whose objective is to construct a software solution that answers as well as possible to its

business needs. Agile approaches rely on adaptive planning, evolutionary development, early delivery,

continuous improvement and rapid & flexible responses to changes (see [13] or [32]).

The term agile was popularized in the software area by the Manifesto for Agile Software Development

that goes back to 2001 [1]. The values and principles proposed by this manifesto are the cornerstones

of a broad range of modern agile software development frameworks, including Scrum and Kanban,

among the most popular agile methodologies in these contexts [9]. Such agile approaches are used

nowadays widely in the industry for non-critical software development: most service industries (e.g.,

banks, insurance, retail, telecommunications, etc.) are typically using them daily for developing their

business software capabilities. All this is also possible when a human systems integration is explicitly

considered, that is, when an appropriate human-in-the-loop modeling and simulation approach is used

to enable incremental discovery of emerging behaviors and properties, leading to emergent functions

and structures of the overall sociotechnical system [6].

The maturity of agile approaches in software development can be measured by the worldwide success

of agile frameworks at enterprise scale, such as SAFe, standing for Scaled Agile Framework (see [18],

[19], [33] or [34]). This last framework proposes an entire body of knowledge for deploying and scaling

agile methods in a enterprise: SAFe indeed explains how to use consistently agile approaches both

at team, program, large solutions, and enterprise portfolio levels, again still in a software context.

mailto:sevag.ainejian@cesames.net
mailto:guy-andre.boy@centralesupelec.fr
mailto:nicolas.charlier@cesames.net
mailto:yann.decre@cesames.net
mailto:daniel.krob@cesames.net
mailto:loic.lesauce@cesames.net

Page | 2

However, the same maturity does not exist for complex systems, meaning here the development of

mixed hardware and software systems where physics remains critical, as this notion is typically

addressed in systems engineering (see [2], [3], [4], [5], [8], [14], [15], [16], [20], [21], [22], [24], [25],

[26], [29], [35], [36], [37], [38] or [39]), where one can only find some poor and still relatively recent

references to agile systems engineering. The first attempt of extending the agile framework to the

context of system development seems to only go back to the end of 2012 when an IBM researcher,

Hazel Woodcock, proposed a revisit of the Agile Manifesto for systems engineering [40]. In line with

this seminal initiative, a working group of the International Council on Systems Engineering (INCOSE)

started then in 2014 to work on agile systems engineering [17], leading in particular to a first textbook

published by B.P. Douglass at the end 2015 [11]. Finally, one shall also point out a recent attempt –

that goes back to October 2017 – of SAFe team that proposed a sketch of a Model-Based Systems

Engineering agile framework. This last proposal remains, however, quite poor and is not supported by

returns on experiments from real system developments [34].

Moreover, these attempts to extend the agile paradigm to systems engineering did not deeply

penetrate the industry. In practice, most industrial development organizations are indeed not “agile”

at all and are still using quite classical, more or less cascaded development approaches based on a V-

cycle organization with specialized teams working in silos, where customer-focus and transversal

collaboration are usually weak. This situation is probably because physical systems are much more

difficult to handle than software systems, and systems development frameworks are usually strongly

constrained by regulatory issues, especially when dealing with critical systems.

Nevertheless, some relatively rare industrial companies have successfully started to deploy agile

systems engineering approaches with outstanding outcomes. Two examples are SpaceX and Gripen,

which are presented below.

• First of all, SpaceX has been able to apply an “agile” approach to a multidisciplinary industrial and

complex system such as a launcher. Agility allowed SpaceX to significantly reduce program costs by

transforming the classical unique single development cycle into a series of short design-build-test

development cycles. During these short cycles, departments and disciplines are aligned on the same

system view of the global product. All development actors involved in SpaceX engineering activities

are regularly synchronized to reduce over-costs and delays in each short iterative cycle. In the same

way, customers’ requirements are permanently tracked and verified to optimize all design items

covering these requirements at each iterative design-build-test cycle. Finally, it should be noted

that digital continuity is critical to improving collaboration and controlling the state of the system

at each cycle, allowing the three SpaceX sites, each involving numerous specialized teams, to work

as a global team sharing all the critical data. However, no detailed information does exist on the

SpaceX case, and it is thus impossible to derive a specific agile methodology from it.

• In the same way, Saab successfully applied an iterative approach to developing the JAS 39 E/F

Gripen military aircraft, with a considerable impact on design complexity. This aircraft's design cost

is estimated at 14 B€ instead of 25 B€ for the Dassault Aviation’s Rafale. The Gripen's success is

mainly linked to the efficiency of the transversal collaboration between functional and design

teams, who used digital and functional mockup tools as pivot tools to synchronize, which is critical

but is, however, just a part of an agile approach.

These two examples show well the strategic importance of agility in the context of multi-physical

complex industrial system development, though not leading to any explicit methodology.

Page | 3

Our Agile Systems Engineering Framework

The first fundamental of the agile systems engineering framework that we are proposing here consists

in analyzing an agile complex system development project as a mechanism for quickly refining the

design space associated with the system under development that allows it to move:

• From a starting point or an initial situation where the target system can only be located in a

more or less large area of its design space,

• To a point of arrival or to a final situation where the target system is now reduced to a well -

specified point in its design space.

This approach is thus based on the classic concept of design space of a system, introduced in systems

engineering by MIT (see [31],[18], [28] or [12]) and that we shall now present more in details.

The Concept of Design Space

The classic definition of a design space (see [31], [18], [28] or [12]) states: "The design space of a system

is the whole set of all the conceptions that meet the needs of the stakeholders of this system. From a

mathematical point of view, it is a topological space. The problem of designers is to find the most

optimal design – in the sense of Pareto – within this space”.

To fully understand this fundamental concept, one must remember that a given system can be seen as

a multi-dimensional object whose dimensions – in an algebraic meaning – are the independent

variables that allow it to be specified. To fix the ideas, imagine that we want to design a colorful cube

C which depends on three design parameters, namely:

• The length of a side of C, which is a real positive number, varying in R+,

• The color of C, which varies in a discrete set Colors of colors,

• The mass of C that can also be seen as a real positive number, varying in R+.

We can then associate with our cube a three-dimensional space E(C) = R+ x Colors x R+, which can be

equipped with a quotient topology, in order to capture the fact that mass and length are here not

independent since these two parameters are coupled as soon as we have frozen the material that we

use to make a cube, where each of the components of our topological space has its natural topology

(here continuous, discrete and continuous).

The design space associated with cube C is then defined as the part of the quotient topological space

E(C) corresponding to all the cubes achievable in practice in a given context.

Figure 1 : A design space with two degrees of freedom

Page | 4

This example is straightforward, but it is easy to understand how to generalize it. In practice, the design

spaces of complex systems are parts of very large topological spaces (from hundred thousand to

several million dimensions, depending on the system's complexity), the number of dimensions in play

corresponding to the maximum number of independent design parameters that characterize a given

system. It is thus a complex mathematical object, both interesting to consider conceptually and not

without practical interest because many engineering problems can be reduced to multi-criteria

optimization issues – that we can approach with Pareto front calculation methods – within the design

space associated with a given system (see [5], [7], [8] or [10]) .

Figure 1 finally shows a hyper-simplified example of a two-dimensional design space which we will use

to illustrate this concept. Each conceivable system corresponds here to a point of the design space

which is the space surrounded by the border curve in this figure and delimiting the design perimeter

of all conceivable systems.

Agile Systems Engineering as a Design Space Exploration Process

That being recalled, a complex system design process can be seen as a process of exploring the design

space of the considered system, whose role is to identify the target solution by analysing alternative

solutions, then evaluating them with regard to selected performance criteria to eliminate non-optimal

solutions and keeping only relevant solutions before exploring them further.

In the same way, an agile systems engineering process can then be seen as a design space exploration

process whose aim is to identify, as quickly as possible, the viable design perimeter by considering,

analysing and comparing, at the same time, several design hypotheses at different levels of granularity,

as represented in Figure 2 where each bold dashed circle or point represent a design alternative.

Figure 2 : Principle for exploring the design space in an agile way

In this approach, the design is organized in design loops per stages of refinement (coarse design loop,

intermediate design loop, fine design loop) dedicated to more and more fine levels of granularity. To

take an automotive example, the first step (coarse design loop) would correspond to the choice of the

global dimensions of a vehicle (e.g., space, power, length, etc.), the second step (intermediate design

loop) to the dimensioning of large subsystems of a vehicle (e.g., engine, chassis, bodywork, etc.) and

the third step (fine design loop) to the detailed specifications of modules or parts of a vehicle.

Once the concept of design space has been identified as a central concept for “thinking” agile systems

engineering, one still must know how to handle it in practice, a design space being a terribly abstract

topological space. For this, we had to define a mean of concretely representing and dealing with the

design space of a complex system, which allows both to have a good level of coverage, while remaining

practical and actionable in practice along real industrial projects.

Page | 5

To do this, we propose the concept of key design driver:

“Key Design Drivers (KDD) are system design parameters of capital importance for design. The values

of the Key Design Drivers are produced by design activities in order to assess the design alternatives

and to arbitrate between them. They shall be defined in the form of a variation range”.

Figure 3 : Example of key design drivers for an electronic toothbrush system

For each design loop, the key design drivers must be a coherent set of interdependent characteristics

covering both the operational architecture of the product (e.g., mission profiles, use cases, stakeholder

needs), especially including manufacturing and maintenance constraints, its functional architecture

(e.g., specific / critical functions, behavioral performance) and its structural architecture (e.g., mass,

geometry of critical parts, technological requirements, etc.).

Key design drivers can typically be identified by eliciting the needs and the functional and structural

requirements of a given system according to the CESAM methodology [23] and then extracting the key

performance indicators that are involved in these system properties (see Figure 3 for an example on

an electronic toothbrush system). One must finally eliminate the key performance indicators that

depend on others to get the key design drivers in our meaning. The system design space becomes then

a part of a topological space with N dimensions, where N is the number of key design drivers.

Main Features of our Agile Systems Engineering Framework

We can now present the main features of an agile model-based systems engineering framework,

based on the fundamentals presented above for its agile part and on the CESAM framework for its

model-based systems architecting part [23], which emerged from concrete industrial experiences in

order to ensure practical applicability (see the last section).

Feature 1: Product / Organisation Alignement

Preliminary definition of a product reference architecture:

Adequate product architecture is the first key element to enable agile systems engineering. In this

matter, it is vital to construct a generic reference product breakdown where the system of interest is

recursively decomposed into logical components that are as independent as possible from a functional

and logical point of view. Such a breakdown helps reduce the functional and logical interfaces between

the system's components and, consequently, the issues linked to the concurrent design and integration

of these components. Such a generic reference product breakdown shall, in particular, contribute to a

Page | 6

maximalist ("150 %") high-level vision of the system or the family of systems of interest that includes

the definition of generic assets such as generic external and internal interfaces, generic needs, and

functional and structural requirements, generic functional and logical architectures, etc.

Figure 4 – Reference logical architecture of an electronic toothbrush

An example of such a generic reference architecture – here a logical one – is provided in Figure 4 for

an electronic toothbrush. Note that these reference architectures are key for providing a standard and

shared way of presenting and analyzing different design alternatives when relevant. They are also a

natural support for impact analyses, as far as they have a double functional and structural nature.

Product / organisation alignment:

A second critical element of agile systems engineering is aligning the multidisciplinary activities and

the generic reference product architecture. Organizations shall replicate the product architecture to

provide the best agility throughout the development process. Traditional activity organization is often

a source of tunnel effect since teams are not functionally independent, not sufficiently autonomous,

and even sometimes too big to be mastered in an agile process. It is thus often crucial to reorganize

the development teams to mimic the reference product architecture in the organization.

Hence, a typical agile system development organization shall be split into 2-3 or more layers according

to product complexity and constraints. For instance, a typical 3 layers organization will be broken down

into a system level, a sub-system level, and a part level (this last level considers the part manufacturing

constraints, typically for mechanical components). In this organization, each team shall be in charge of

a unique component of the reference breakdown of the system of interest, all components being

covered by the different development teams. Finally, one must identify “architects” that shall be in

charge of synchronizing the various development teams horizontally between the different disciplines

and vertically between the different product layers. The resulting organizational model is illustrated in

Figure 5 for an electronic toothbrush.

Page | 7

Figure 5 – Agile organization resulting from a product / organization alignment

Feature 2: Iterative Collaboration between Layers and Disciplines

The second idea of our agile approach for complex systems engineering consists in iteratively defining

the system by organizing its development into successive collaborative design loops of increasing

length and granularity where the system relevancy, consistency, and feasibility are assessed at more

and more precise levels of analysis (see Figure 6). Each loop shall cover and study several possible

system variants at different grain levels along their full development cycle, starting from top-level

architecture up to manufactured part design and definition of manufacturing & maintenance concepts.

The design choices shall be gradually frozen and deepened until the system's full specification and

associated manufacturing and maintenance processes are achieved. All system stakeholders – in

particular manufacturing and maintenance actors – shall be involved in these design loops to capture

their constraints as early as possible.

Such a development model makes it possible to freeze quickly structuring choices related to system

global performance, system architecture, external or internal interfaces, critical parts or technologies

and development, manufacturing and maintenance processes, ensuring the technical and industrial

feasibility of the target system and providing a good control of risks at any time.

During each design loop, all involved teams – that is, all engineering and manufacturing disciplines

involved in a product development – shall work collaboratively and share the same set of key design

drivers and hypotheses that will be progressively refined and frozen (see feature 3). At the end of each

design loop, a new system increment shall be generated and validated through virtual integration

based on relevant models and tools (see feature 4). Due to the progressive refinement of the key

design drivers, this approach provides considerable adaptability of the system development process

to new or updated requirements or constraints from various stakeholders and helps multidisciplinary

teams reaching the global optimum system choice at each loop. Figure 6 illustrates it with four design

loops starting from an initial high-level coarse-grain loop up to a final fine-grain detailed loop.

Page | 8

Figure 6 – Our agile development model based on successive and more & more detailed design loops

Each design loop will, in particular, analyze several design alternatives, starting typically with a dozen

options in the first loop, reducing them to 2-4 main choices in the second loop, up to converging to

only 1-2 critical alternatives in the last loop. This can be achieved with trade-off techniques (cf. [27] or

[30]), with different levels of details to reach a global optimum.

Note that system requirements are usually often over-specified and in much too significant numbers

since all actors in the development chain often create requirements to protect themselves by taking

local safety margins. In an agile approach, each design loop shall pay specific attention to formalize the

system requirements to what is necessary. This objective mainly relies on classic prioritization / multi-

criteria optimization techniques managed through collaborative requirements reviews, regularly

involving all key development actors where performance allocations are collaboratively managed and

optimized when descending into product architecture.

Since we are dealing with systems, any agile development process shall also consider deeply the

constraints coming from manufacturing and maintenance since these are the steps where the “real

thing” is constructed and used. In an agile systems-engineering process, manufacturing teams must be

especially involved in each design loop – as already pointed out – to analyze design requirements from

their perspective and to evaluate / simulate their impact on manufacturing and assembly processes

with the “good” industrial performance indicators (e.g., lead time, non-recurring and recurring costs,

non-quality). Similarly support and services teams must be involved to evaluate the impact of design

requirements on the maintenance and support processes using their relevant performance indicators

(e.g., time and cost of maintenance and support operations).

Regular systems architecture rituals, involving design, manufacturing and maintenance teams, and

more generally all relevant stakeholders, shall be regularly organized within each design loop to

integrate all these different point of views in the design. Model-based systems engineering plays a key

role in these rituals which shall be balanced between a product and a project focus. A typical agile

design ritual indeed consists in examining and discussing collectively more and more precise models

of the product under development and not only the status of the project activities. These rituals rely

naturally on a set of operational, functional and structural system models [23] whose discussion,

challenge and convergence shall be at their heart.

Page | 9

Feature 3: Iterative and Shared Key Design Driver’s Management

The third key idea is the use of the key design drivers, as introduced previously, to monitor each design

loop. They indeed allow both to explore the design space in a rigorous and controlled way, but also to

identify potential architecting variants (see Figure 7).

The key design drivers shall especially represent the hypotheses shared between all teams involved in

agile development, i.e., elicit a shared design space. The first activity is identifying the key design

drivers associated with the system of interest. The first loop shall focus then on the structuring

parameters of the system that are to be analyzed with the highest priority. During a given design loop,

teams shall work with a shared fixed range for each key design driver, with freedom of design. At the

same time, their parameters are contained in the defined ranges associated with each key design driver

from a given synchronization ritual to the next one. At each iteration, the teams shall define and

evaluate potential architecture variants within the ranges of the considered key design drivers to

reduce these ranges at the end of the iteration. If no feasible architecture can be defined within the

design space defined by the current key design drivers, a synchronization activity will redefine new

ranges for the key design drivers.

This approach ensures agility to adapt the design in a robust way by mastering the traceability from

initial stakeholder requirements to shared design functional and structural hypotheses.

Figure 7 – Examples of key design drivers identified in the context of an electronic toothbrush development,

here used to define two product variants that were analysed during a first design loop

Feature 4: DMU and FMU as Pivots for Transversal Synchronization

The last ingredient of an agile systems engineering process is to use digital and functional mockups

(DMU and FMU) as pivots for virtual integration and transversal synchronization in each design loop.

The key idea is here that at the end of each iteration, each team shall produce models (3D, thermal,

mechanical resistance, thermodynamics, etc.) which are to be integrated into a shared DMU (for the

geometrical aspects) and a shared FMU (for the functional aspects), whose overall coherence is

analyzed. Due to the need to synchronize all disciplines at each product increment, using these digital

models as pivots for the design is crucial to supporting an agile approach. In this matter, note that the

functional digital mockup is usually not a single tool but a series of interconnected tools (e.g., a system

modeling tool, a simulation workshop, a dysfunctional analysis tool, etc.).

Page | 10

A key difficulty is primarily here to ensure the alignment of the system breakdown of the functional

digital mockup with the geometrical breakdown of the digital mockup, which currently is still a matter

of human expertise. Both tools have different modeling constraints that need to be addressed in an

integrated way. Nevertheless, functional and discipline integration through functional-oriented and

computer-aided design tools is crucial in implementing agile systems engineering.

The critical point is that the functional mockup shall be designed to provide comprehensive system-

level predictive models, i.e., integrating all key product dimensions, typically multi-physical, that allow

simulating the system under design within its environment to validate hypotheses and manage trade-

offs. The levels of detail and the representativeness of such models must be aligned with the

granularity of the design loops. These models can be existing models (e.g., Simulink or Modelica

models) or existing model aggregations via ad hoc tools (e.g., Optimus). Such system-level simulation

models are key for evaluating design performances, validating the design choices, managing the initial

trade-offs, and helping to negotiate with the stakeholders.

Discussion

Our agile systems engineering framework has the following four key features, allowing an industrial

company to successfully implement an agile/iterative systems engineering framework:

1. Product and organization alignment,

2. Iterative collaboration between layers and disciplines,

3. Iterative key design driver’s management,

4. Digital & functional mockups as pivots for transversal synchronization.

Note that features 1 and 3 do strongly rely on systems engineering and architecting techniques, when

feature 2 is rather an adaptation of agile and SAFe principles to industrial contexts and feature 4

refers to the digital tooling support. The synthesis of all these features is illustrated in Figure 8.

Figure 8 – Overview of our agile systems engineering framework

Page | 11

Experimental Validation

Our agile systems engineering framework was progressively constructed through a series of concrete

experiments in three different types of industrial environment, namely aeronautic, nuclear plant and

civil engineering contexts to cover different system scales.

We then used again an aeronautic context to test our complete methodology on various real systems.

To this aim, the complete agile model-based systems engineering framework was then experimentally

deployed and validated in an industrial context provided by an international aeronautical player on

four varying-scale innovation projects involving complex systems with a dominant mechanical focus

(ranging from complex parts to a complete integrated system). It should be noted that the deployment

of this agile approach was part of an enterprise transformation plan with the objectives of accelerating

development and better exploring the design spaces, the projects serving as “proofs of concept.”

The methodology for deploying the agile approach on projects followed a similar four-step pattern,

based on the principles that we presented, and strongly involved project key actors:

• Step 1: definition of the system architecture of the system of interest, through operational,

functional and structural views, supplemented, when necessary, by relevant manufacturing or

assembly diagrams;

• Step 2: identification of the key design drivers, associated with all disciplines involved in the

design of the system of interest;

• Step 3: specification of the design loops – according to the planning of the project of interest

– by characterizing in particular the objectives & duration of each loop, the key design drivers

managed during each loop, the design activities (modeling, analyses, simulations, etc.) of each

loop and the engineering data flows feeding these design activities;

• Step 4: deployment of agile operation and loops, as defined in step 3, according to several

iterations, taking into account the feedbacks at each loop.

The deployment of our agile framework on projects especially revealed the following elements:

1 The agile mode of operation obliges formal synchronization of design activities which was

usually managed in an uncontrolled way.

2 The implementation of design loops – especially during the upstream design phases – leads to

challenge the level of detail of design activities, allowing to better explore the design space.

3 The digital continuity of design tools, in terms of data configuration management and data

exchange, as well as the collaborative management of key design drives is a key success factor.

4 Classical agile principles such as collaborative work, co-location of teams and visual

management are also key success factors.

Finally, the performance measured during the four innovation projects on which we deployed our agile

systems engineering framework on the upstream phases of the critical design review showed gains,

compared to projects of similar size and complexity, of the order of – 30 % on design schedules and of

the order of – 50 % on resource workload and costs.

Page | 12

References

[1] Agile Manifesto, Agile Manifesto, http://agilemanifesto.org/ (2001)

[2] ANSI/GEIA, ANSI/GEIA EIA-632 – Processes for engineering a system (2003)

[3] Aslaksen E.W., The changing nature of engineering, McGraw-Hill (1996)

[4] Aslaksen E., Belcher R., Systems engineering, Prentice Hall (1992)

[5] Blanchard B.S., Fabricky W.J., Systems engineering and analysis, Prentice Hall (1998)

[6] Boy G.A., Human Systems Integration: From Virtual to Tangible. CRC Press, Taylor & Francis

Group (2020)

[7] de Weck O., Strategic Engineering – Designing systems for an uncertain future, MIT (2006)

[8] de Weck O.L., Roos D., Magee C.L., Engineering systems – Meeting human needs in a complex

technological world, The MIT Press (2011)

[9] Dingsoyr T., Nerur S., Balijepally V., Moe N.B., A decade of agile methodologies: Towards

explaining agile software development, Journal of Systems and Software, 85, (6), 1213-1221

(2012)

[10] Doufène A., Krob D., Pareto Optimality and Nash Equilibrium for Building Stable Systems, IEEE

International Systems Conference (2015)

[11] Douglas B.P., Agile Systems Engineering, Morgan Kaufman (2015)

[12] Hegedüs, Á., Horváth, Á., Varró, D. A model-driven framework for guided design space

exploration. Autom Softw Eng 22, 399–436 (2015). doi.org/10.1007/s10515-014-0163-1

[13] Highsmith J., Agile Project Management: Creating Innovative Products, Addison-Wesley (2009)

[14] Honour E.C., Understanding the value of systems engineering, INCOSE 2014 International

Symposium, Vol. 14, 1207–1222, Toulouse, June 20-24, 2014, France, INCOSE (2014)

[15] IEEE, IEEE 1220-2005 – Standard for Application and Management of the Systems Engineering

Process, Institute of Electrical and Electronics Engineers (2005)

[16] INCOSE, Systems Engineering Handbook, A guide for system life cycle processes and activities,

INCOSE (2011)

[17] INCOSE, Agile systems,

https://www.incose.org/ChaptersGroups/WorkingGroups/transformational/agile-systems-se

[18] Kang E., Jackson E., Schulte W., An Approach for Effective Design Space Exploration, [in

“Foundations of Computer Software. Modeling, Development, and Verification of Adaptive

Systems”, Calinescu R., Jackson E., Eds.], Monterey Workshop 2010, Lecture Notes in Computer

Science, 6662. Springer (2011). doi.org/10.1007/978-3-642-21292-5_3

[19] Knaster R., Leffingweel D., SAFe® Distilled: Applying the Scaled Agile Framework for Lean

Software and Systems, Addison-Wesley (2017)

[20] Kossiakoff A., Sweet W.N., Systems engineering – Principles and practice, Wiley (2003)

[21] Krob D., Eléments d’architecture des systèmes complexes, [in "Gestion de la complexité et de

l’information dans les grands systèmes critiques", A. Appriou, Ed.], 179-207, CNRS Editions

(2009)

[22] Krob D., Eléments de systémique – Architecture de systèmes, [in "Complexité-Simplexité", A.

Berthoz - J.L. Petit, Eds.], Editions Odile Jacob (2012)

http://agilemanifesto.org/

Page | 13

[23] Krob D., Model-Based Systems Architecting – Using CESAM to Architect Complex Systems, ISTE-

Wiley (2022)

[24] Maier M.W., Rechtin E., The art of systems architecting, CRC Press (2002)

[25] Meinadier J.P., Ingénierie et intégration de systèmes, Lavoisier (1998)

[26] Meinadier J.P., Le métier d’intégration de systèmes, Lavoisier (2002)

[27] Miles L.D., Techniques of value analysis and engineering, McGraw-Hill (1972)

[28] Nardi L., Koeplinger D., Olukotun K., Practical Design Space Exploration, [in “2019 IEEE 27th

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems”], 347-358, (2019). doi:10.1109/MASCOTS.2019.00045

[29] NASA, Systems Engineering Handbook, 2007-edition, NASA/SP-2007-6105 (2007)

[30] Parnell G.S., Driscoll P.J., Henderson D.L., Decision marking in systems engineering and

management, Wiley (2011)

[31] Pimentel A.D., Exploring Exploration: A Tutorial Introduction to Embedded Systems Design Space

Exploration, [in “IEEE Design & Test”], 34, (1), 77-90, (2017). doi: 10.1109/MDAT.2016.2626445

[32] Runyan K., Ashmore S., Introduction to Agile Methods, Addison-Wesley (2014)

[33] SAFe, Scaled Agile Framework, http://www.scaledagileframework.com/

[34] SAFe, Model Based Systems Engineering, http://www.scaledagileframework.com/model-

based-systems-engineering/

[35] Sage A.P., Armstrong J.E., Introduction to systems engineering, Wiley (2000)

[36] Sillitto H., Architecting systems – Concepts, principles and practice, College Publications (2014)

[37] Simon H., The Architecture of Complexity, Proceedings of the American Philosophica, 106 (6),

467-482 (1962)

[38] Turner W.C., Mize J.H., Case K.H., Nazemetz J.W., Introduction to industrial and systems

engineering, Prentice Hall (1978)

[39] von Bertalanffy K.L., General System Theory: Foundations, Development, Applications, George

Braziller (1976)

[40] Woodcock H., The Agile Manifesto reworked for Systems Engineering, INCOSE UK, ASEC conf.

(2012)

http://www.scaledagileframework.com/
http://www.scaledagileframework.com/model-based-systems-engineering/
http://www.scaledagileframework.com/model-based-systems-engineering/

